首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   864篇
  免费   43篇
  国内免费   1篇
  2023年   4篇
  2022年   4篇
  2021年   22篇
  2020年   16篇
  2019年   12篇
  2018年   22篇
  2017年   21篇
  2016年   25篇
  2015年   38篇
  2014年   62篇
  2013年   75篇
  2012年   61篇
  2011年   60篇
  2010年   50篇
  2009年   22篇
  2008年   41篇
  2007年   47篇
  2006年   44篇
  2005年   39篇
  2004年   39篇
  2003年   27篇
  2002年   28篇
  2001年   14篇
  2000年   14篇
  1999年   11篇
  1998年   6篇
  1997年   7篇
  1996年   8篇
  1995年   7篇
  1994年   3篇
  1993年   2篇
  1992年   4篇
  1991年   3篇
  1990年   4篇
  1989年   3篇
  1988年   3篇
  1987年   2篇
  1986年   6篇
  1985年   5篇
  1984年   8篇
  1983年   3篇
  1982年   5篇
  1981年   5篇
  1980年   2篇
  1979年   5篇
  1978年   4篇
  1977年   3篇
  1976年   3篇
  1969年   3篇
  1930年   1篇
排序方式: 共有908条查询结果,搜索用时 15 毫秒
61.
The structure, electron density distribution, energetic and electrostatic properties of simple nitramine based energetic TMA, DMNA, MDA and TNA molecules were determined using density functional theory (B3LYP) with the 6-311G** and aug-cc-pVDZ basis sets coupled with Bader's theory of atoms in molecules. In the NO2 group substituted molecules, the N–N bond distance increases with the increase of NO2 groups, whereas in C–N bonds, this effect is relatively less, and the distances are almost equal. The topological analysis of electron density reveals that the electron density ρbcp(r) of C–N and N–N bonds are significantly decreasing with the increase of NO2 groups in the nitramine molecules. The Laplacian of electron density ▽2ρbcp(r) of N–NO2 bonds [DMNA: ? 16.7 eÅ? 5, MDA: ? 12.8 eÅ? 5 and TNA: ? 7.9 eÅ? 5] of the molecules are relatively less negative, and the values also decrease with the increase of NO2 groups; this implies that the charge concentration decreases with the increase of NO2 groups, which leads to weakening the N–N bonds of the molecules. The isosurface of molecular electrostatic potential displays high electronegative regions around the NO2 groups. The oxygen balance OB100 of the molecules increases as the number of NO2 group increases in the molecules, in which, the TNA molecule having maximum OB100 value [+7.89]. The band gap, heat of detonation, bond dissociation energy and charge imbalance are predominantly depends on the number of NO2 group present in the molecule. The charge imbalance parameter (ν) has been calculated for all molecules, which reveals that TNA is a highly sensitive molecule, the corresponding ν value is 0.047.  相似文献   
62.
63.
Phytoremediation using timber-yielding tree species is considered to be the most efficient method for chromium/tannery effluent-contaminated sites. In this study, we have chosen Albizzia lebbeck, a chromium hyperaccumulator plant, and studied one of its chromium detoxification processes operated by its endophytic bacterial assemblage. Out of the four different groups of endophytic bacteria comprising Pseudomonas, Rhizobium, Bacillus, and Salinicoccus identified from A. lebbeck employed in phytoremediation of tannery effluent-contaminated soil, Bacillus predominated with three species, which exhibited not only remarkable chromium accumulation ability but also high chromium reductase activity. A chromate reductase was purified to homogeneity from the most efficient chromium accumulator, Bacillus sp. DGV 019, and the purified 34.2-kD enzyme was observed to be stable at temperatures from 20°C to 60°C. The enzyme was active over a wide range of pH values (4.0–9.0). Furthermore, the enzyme activity was enhanced with the electron donors NADH, followed by NADPH, not affected by glutathione and ascorbic acid. Cu2+ enhanced the activity of the purified enzyme but was inhibited by Zn2+ and etheylenediamine tetraacetic acid (EDTA). In conclusion, due to its versatile adaptability the chromate reductase can be used for chromium remediation.  相似文献   
64.
65.
Inflammatory mediators, including cytokines and growth factors are associated with the pathology of chronic liver diseases. The aim of our present work was to study the effect of exogenous leptin and/or ethanol on the secretion of TNF-alpha, IL-6 and TGF-beta1 both in vivo and in vitro. Forty eight hours after the exposure to ethanol (500 mM) significantly elevated the secretion of TNF-alpha, IL-6 and TGF-beta1 in the cell-free culture supernatant (HepG2 and mouse HCC cell lines), which were decreased on leptin (31.2 nM) treatment. Similarly, leptin administration to ethanol (6.32 g kg(-1) body weight) fed mice for 45 days significantly lowered the concentration of these cytokines in the circulation; however, leptin alone (230 microg kg(-1) body weight i.p. administered every alternate day for the last 15 days) had no such significant effect on cytokine secretion both in vivo and in vitro conditions. We conclude that leptin is involved in the protective mechanisms that allow an organism to cope with the potentially autoaggressive effects of its immune system in alcoholic liver disease.  相似文献   
66.
67.
BACKGROUND: The inherent ability of certain peptides or proteins of viral, prokaryotic and eukaryotic origin to bind DNA was used to generate novel peptide-based DNA delivery protocols. We have developed a recombinant approach to make fusion proteins with motifs for DNA-binding ability, Mu and membrane transduction domains, TAT, and tested them for their DNA-binding, uptake and transfection efficiencies. In one of the constructs, the recombinant plasmid was designed to encode the Mu moiety of sequence MRRAHHRRRRASHRRMRGG in-frame with TAT of sequence YGRKKRRQRRR to generate TAT-Mu, while the other two constructs, Mu and Mu-Mu, harbor a single copy or two copies of the Mu moiety. METHODS: Recombinant his-tag fusion proteins TAT-Mu, Mu and Mu-Mu were purified by overexpression of plasmid constructs using cobalt-based affinity resins. The peptides were characterized for their size and interaction with DNA, complexed with plasmid pCMVbeta-gal, and shown to transfect MCF-7, COS and CHOK-1 cells efficiently. RESULTS: Recombinant fusion proteins TAT-Mu, Mu and Mu-Mu were cloned and overexpressed in BL21(DE3)pLysS with greater than 95% purity. The molecular weight of TAT-Mu was determined by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) to be 11.34 kDa while those of Mu and Mu-Mu were 7.78 and 9.83 kDa, respectively. Live uptake analysis of TAT-Mu, Mu and Mu-Mu as DP (DNA+peptide) or DPL (DNA+peptide+lipid) complexes into MCF-7 cells, followed by immunostaining and laser scanning confocal microscopy, demonstrated that the complexes are internalized very efficiently and localized in the nucleus. DNA:peptide complexes (DP) transfect MCF-7, COS and CHOK-1 cells. The addition of cationic liposomes enhances the uptake of the ternary complexes (DPL) further and also brings about 3-7-fold enhancement in reporter gene expression compared to DP alone. CONCLUSIONS: Recombinant proteins that are heterologous fusions, having DNA-binding domains and nuclear localization epitopes, generated in this study have considerable potential to facilitate DNA delivery and enhance transfection. The domains in these fusion proteins would be promising in the development of non-viral gene delivery vectors particularly in cells that do not divide.  相似文献   
68.
Differential expression of globin genes has provided an interesting model system for better understanding commonly inherited diseases such as thalassemia. In the avian beta-type globin cluster (5'-rho-betaH-betaA-epsilon-3'), silencing of the embryonic rho-globin gene occurs concomitantly with the activation of the adult betaA-globin gene during embryonic development. DNA methylation is a dynamic process that regulates gene expression. We observed a progressive loss of methylation of betaA-globin gene, during avian embryonic development that was concurrent with the expression of the gene. The promoter and exon 1 regions of the template strand were completely demethylated, whereas residual methylation was retained in exons 2 and 3. Using a modified methylation-sensitive single-nucleotide primer extension (MS-SNuPE) assay, we observed stage-specific demethylase activity in the nuclear extracts of chicken red cells; activity in 5-, 8-, and 11-day-old erythroid cell nuclear extracts was 6, 76, and 24%, respectively. The demethylase targeted both hemimethylated and fully methylated substrates. Our findings demonstrate stage-specific demethylase activity in nuclear extracts from primary chicken erythroid cells that could target the fully methylated promoter of a developmentally regulated native gene.  相似文献   
69.
Bacteria of genus Aeromonas, responsible for a variety of pathological conditions in humans and fish, are ubiquitous waterborne bacteria. Aeromonas produces several virulent factors including a complex of lipopolysaccharide and surface array protein, involved in colonization. UDP-galactose 4-epimerase (GalE) catalyzes the production of UDP-galactose, a precursor for lipopolysaccharide biosynthesis, and thus is an important drug target. GalE exhibits interspecies variation and heterogeneity at its structural and functional level and therefore, the differences between the GalE of the host and the pathogen can be exploited for drug designing. In the present study, we report biochemical and functional characterization of the recombinant GalE of Aeromonas hydrophila. Unlike GalE reported from all other species, the purified recombinant GalE of A. hydrophila was found to exist as a monomer. This is the first report of UDP-galactose 4-epimerase from any species being a monomer. The molecular mass of the 6xHis-rGalE was determined to be 38271.477 (m/z). The 6xHis-rGalE with a K(m) of 0.5 mM for UDP-galactose exhibited optimum activity at 37 degrees C and pH 8-9. Spectrofluorimetric and CD analysis confirmed that the thermal inactivation was due to structural changes and not due to the NAD-dissociation. A relatively more ordered structure of the enzyme at pH 8 and 9 as compared to that at pH 6 or 7 suggests a key role of the electrostatic interactions in maintaining its native tertiary structure.  相似文献   
70.
The number and distribution of lipid molecules, including cholesterol in particular, in the plasma membrane, may play a key role in regulating several physiological processes in cells. We investigated the role of membrane cholesterol in regulating cell shape, adhesion and motility. The acute depletion of cholesterol from the plasma membrane of cells that were well spread and motile on fibronectin caused the rounding of these cells and decreased their adhesion to and motility on fibronectin. These modifications were less pronounced in cells plated on laminin, vitronectin or plastic, indicating that cholesterol-mediated changes in adhesion and motility are more specific for adhesion mediated by fibronectin-specific integrins, such as alpha5beta1. These changes were accompanied by remodeling of the actin cytoskeleton, the spatial reorganization of paxillin in the membrane, and changes to the dynamics of alpha5 integrin and paxillin-rich focal adhesions. Levels of tyrosine phosphorylation at position 576/577 of FAK and Erk1/Erk2 MAP-kinase activity levels were both lower in cholesterol-depleted than in control cells. These levels normalized only on fibronectin when cholesterol was reincorporated into the cell membrane. Thus, membrane cholesterol content has a specific effect on certain signaling pathways specifically involved in regulating cell motility on fibronectin and organization of the actin cytoskeleton.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号